Agenda

- Why is quality important
- Read Quality
- Assembly Quality
- QC Summary: The 4Cs

Next Generation Sequencing

Phases of Whole Genome Sequencing (WGS)

- DNA/RNA Extraction
- Library Preparation
- Sequencing
- Bioinformatics Analysis
- Genomic Epidemiology

Bioinformatic Analysis

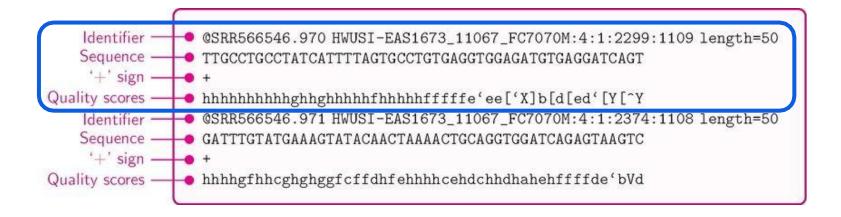
Phases of Bioinformatics Analysis

- **Data Preprocessing**: Remove low-quality reads, adapters, and trim sequences (read cleaning)
- Assembly: Assemble reads into longer contigs or consensus
- **Annotation**: Annotate genetic variants and predict their functional impact
- Genomic Characterization: Identify genomic features that confer phenotypic qualities such as virulence
- **Phylogenetics**: Infer evolutionary relationships

Data Expectation

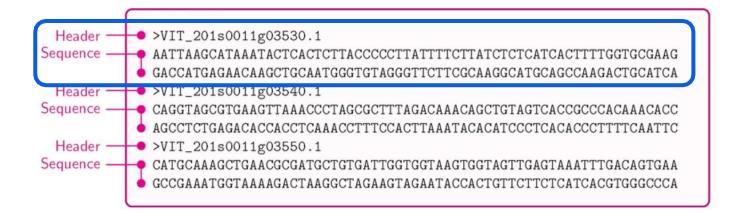
Garbage In, Garbage Out!

- The quality of data limits what you can confidently say about the data and how you can subsequently use it.
- Cleaning and preprocessing data are critical steps in data analysis.
- High-quality data ensures that analyses and results can be reproduced by others, which is crucial for public health, scientific research and credibility.


What QC thresholds should we use?

- Comprehensive quality thresholds have NOT been defined for most pathogens
- Guidance is available for some pathogens from some programmes, e.g. PulseNet
- Thresholds may need to be self-defined and agreed in your lab
- Need to evaluate QC metrics against reasonable biological and technical expectations for the organism and sequencing approach

Challenges


- Divergent expectations/standards across:
 Organisms: RNA viruses, DNA viruses, bacteria, microbial eukaryotes
 - -Sequencing approach: metagenome, single cell, amplicon, WGS
 - -Technology: long-read, short-read, hybrid
 - -Use-case: clinical, outbreak, surveillance, diagnostics
- Consequent heterogeneity in QC criteria naming/determination
- QC reporting can be complex

FASTQ file input

FASTQ file - a standardized format representing unprocessed sequencing fragments, each starting with a unique identifier followed by sequence data and associated quality scores

FASTA file input

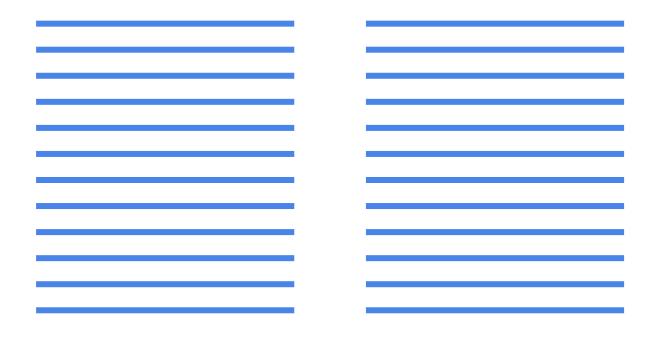
FASTA file - a standardized format representing genetic sequences, each starting with a unique identifier followed by sequence data

Read QC

A quality value Q is an integer representation of the probability p that the corresponding base call is incorrect.


$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%
50	1 in 100000	99.999%


Things to bear in mind...

- Read quality usually decreases towards the end of the read
- Reverse read is usually poorer quality than forward read

FastQC

Read trimming: Trimmomatic and BBDuk

Remove:

• Low quality reads

• Low quality ends

of reads

• Sequencing

adapters

Read trimming: Trimmomatic and BBDuk

Remove:

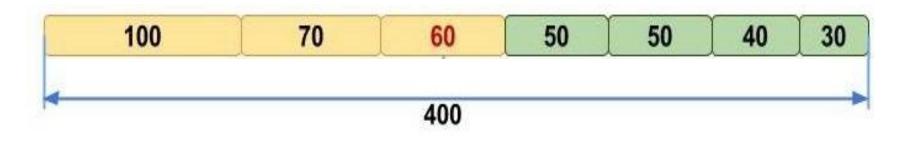
- Low quality reads
- Low quality ends of reads
- Sequencing adapters

Interpreting read quality outputs

- Number of reads: Too low = Too much multiplexing, not enough input library; Too high = too little multiplexing, downsample
- Average Read Quality: Too low = error with library preparation or sequencing; data is not accurate
- Average read length: Too low = fragmented library preparation

Assembly QC

Number of contigs

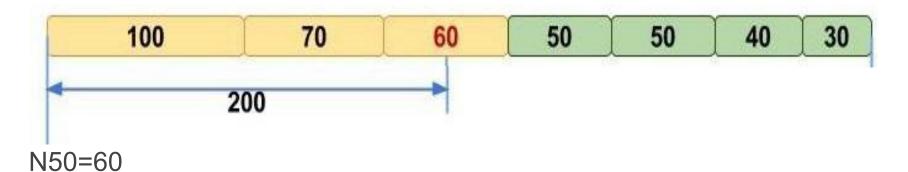


n=7

Fewer is better

Assembly QC

Assembly length (total length of all contigs)



length=400

Should be close to the expected genome length

Assembly QC

N50 value

Bigger is better

Length of the shortest contig needed when 50% of the total genome length is covered using the fewest (longest) contigs

Assembly QC

GC content

ATGCCAACAGTTCTGACTGA

Close to expected GC % for taxon

Different bacterial species have different average GC %

V. cholerae GC content ~47.5%

Assembly quality control outputs

- Number of contigs
- Assembly length
- N50 value
- GC percent

QC Summary: The 4Cs

Completeness

01

Do you have the whole genome represented in the sequence data and assembly?

Assembly length: sum of all contigs from a single assembly

02 **Contiguity**

How broken is the genome assembly?

Number of Contigs

N50

Number of Ns

Is the assembly correct on a per-base basis, and are the reads correctly assembled?

Average Read Quality

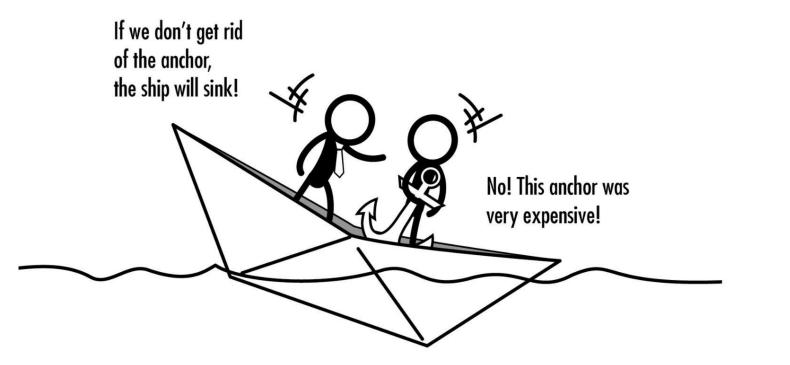
Correctness

03

Average read depth throughout the genome (sometimes referred to as *depth of coverage*)

Contamination

Are (too many) reads from non-target taxa or multiple clones?


Kraken taxon

04

Solutions for QC failures

01	Completeness	Do you have the whole genome represented in the sequence data and assembly?	Sequence deeper
02	Contiguity	How fragmented is the assembly?	Use longer read lengths
03	Correctness	Is the assembly correct on a per-base basis, and are the reads correctly assembled?	Sequence deeper/downsample reads/use higher accuracy sequencing
04	Contaminatio	Are (enough of) the reads from the target organism?	Re-isolate and re-sequence

Bad Data, Is Bad Data!

